MikePack 1.65

4th Dimension® External Package

User
Documentation

©1993 Michael Jimenez

Introduction i

General Information..........cc.oooviiii i ii
The Array ROUTINES. ...cuiiiiiiiiiii e 1
MP Ar1ay2File. ..o, 1
MP ATTAY2TEXE. . eniiiiiieiiiie e e e ans 1
MP FILE2TEXT ... ittt e e e e e e e e e e s e e eanas 2
MP MERGEARRAYS. ..ottt 2
MP TEXT2ARRAY ...ttt et e e e e e ean e 3
MP FILLARRAYuitiiiiee et et e e e e e e e e e eanas 3
MP S2IN AT TAY .. tuitniiniiiieieieie e eeeie e e e eae e eneaeneanenennans 4
MP N2S AT TAY .. ituitniiniiiiiieiineieeieeieeeeieteeetetettaetaeetaeeaeeneneens 4
MP POPULATE. ..ottt e e e e e e aanes 4
MP DISTINCT ...ttt et ee e e e e e e e e aeanas 5
MP SEATrChATTAY ... ccuiiniiiieiieeie e e e e e e eens 5
MP ARRAYSELECT ...ttt e e 6
MP APPLYZ2ARRAY ...cuiitii ittt e e 6
The Drag & Drop ROULINES........cccuiiiiiiiiiiiiice e 7
MP DragBloCK.......couuiiiiiie e 7
MP DragTeXt. ..o 8
MP MUIEIDTAQG. ... itiiiieiie e e e 9
MP Dragltem......c.oeuiniiie e 10
The Gestalt ROUTINE.......couiiiiiiiiii e 11
MP GeStalt...couieiiiiiie e 11
The PopupMenu ROULINES.........ccooiiiiiiiiiiiiii et 12
MP POPUPMENU.....iiiiiiiiiiiiee et 12
MP POPUPPIUS... e 13
The String ROUTINES......c.uiiiiiiiiiiii e 14
MP JUSEIEYTEXE. e 14
MP PadTeXt. . ceuiiiiiiiieie e e e e e e e e e e anas 14
MP TrImTEXt. et e e e e enens 15
MP TrimLe T, ..o 15
MP TrimRight.....ccooiii e 15
MP SCROLLTEXTttt e e e e e e e eens 16
MP DRAWTEXT ... ittt ettt et e e e e ae e e e e e 17
The Miscellaneous ROULINES.........c.ceiuiiiiiiiiiiiiiiceceee e 18
MP SCROLLRECT ..ottt et e e e e e e eaes 18
MP FRAMERECQGT oot e e 19
MP ERASERECT ...t e e et e e e eaees 19
The Clipboard ROULINES......ccuoiuiiiiiiiieie e e 20
MP ATTay2CliD e i 20
J\Y 1 o Te] 7 O) o T PP 20
The WIndow ROULINES........iiiiiiiiiiiie e 21
MP WINDOWLOCttt et e e ee e aeanas 21
MP WINDOWSIZE.... .ottt e e e ae e 21

MP SIZEWINDOW. ... oo 22

MP MOVEWINDOW

Introduction

Before delving head first into the gory guts of the world of syntax and code
examples, I wanted to give you some background on the MikePack package,
and why it exists.

MikePack started out as a group of a few loosely related 4D routines that I
seemed to use in almost all of my projects. I decided to set up a library of
4D routines that I could use from project to project. That worked, but some
of the routines were kind of slow. Pascal came to the rescue. I re-wrote all
of the 4D library routines in Pascal, and had a set of 6 or 8 externals.

As I took on new projects, and new needs arose, this little grouping turned
into over 90 routines in 5 separate packages!

I decided that these routines were certainly not "rocket science", they were
simply faster, or easier ways to do things I was already doing in 4D. That's
why they're shareware, not commercial.

I've broken the manual down into separate sections. There's a table of
contents, index, and one section of detail per package. The routines are
listed within their respective sections.

For each routine, there is a syntax explanation, a table describing
parameter and return value usage, and a paragraph or two of how to use
the command. There's also a code example for most of the commands.

I hope that these routines save you time and effort in your 4D adventures,
and that you can find new and inventive ways to use them. The demo
database simulates several pieces of general business routines, but
hopefully you can devise even more creative methods of using MikePack!
Thanks for your interest and time!

Mike Jimenez

General Information

All of the routines that deal with arrays in any way, will require you to pass
the NAME of the array, and NOT THE ARRAY itself. This is VERY important.

The routine MP DISTINCT, requires that the arrays be sorted before use in
the external.

Except where noted, ALL arrays managed by these packages are to be TEXT
arrays. Two notable exceptions are contained in the MP S2N Array and MP
N2S Array routines. Please consult the parameter tables for more details.

The Array Routines

MP Array2File

Err := MP Array2File ("myArray" ; FileName ; Creator ; Type)

PARAMETER TYPE RECEIVES DATA DESCRIPTION
myArray STRING NO Name of array to work with
FileName STRING NO Full pathname of file to be created
Creator STRING NO 4 digit file creator descriptor
Type STRING NO 4 digit file type descriptor
RETURNS VALUE TYPE DESCRIPTION
YES INTEGER Mac OS File system error codes
from trying to create the file. 0
means all went well.

The data in the TEXT array will be written to a file. A system error will be
returned into Err, 0 means successful creation of the file.

A full pathname can be used as the file name. Creator can be any valid 4
character id, ie. "MSWD" for Microsoft Word, or "XCEL" for Microsoft Excel.
Type should also be a 4 character descriptor.

Use "TEXT".

If you feel extremely experimental, you could use something else...

MP Array2Text
myText := MP Array2Text ("myArray" ; Delimiter)
PARAMETER TYPE RECEIVES DATA DESCRIPTION
myArray STRING NO Name of array to work with
Delimeter STRING NO Character to act as separator

between lines of the text field

RETURNS VALUE TYPE DESCRIPTION
YES TEXT The text created by the merging of
the lines of the array.

The contents of the array will be placed into the text variable. Pass the
name of the array, not the array itself. The char(Delimeter) parameter will
separate the elements of the array as they're placed into the text variable.

MP FILE2TEXT

MP FILE2TEXT (FileName ; Err ; "TextArray")

PARAMETER TYPE RECEIVES DATA DESCRIPTION
FileName STRING NO Full pathname of file to be read into
memory
Err STRING YES Error number from OS
TextArray STRING NO Name of array to receive contents
of file
RETURNS VALUE TYPE DESCRIPTION
NO N/A N/A

Pass the filename to be read, the error variable (text), and the text array to
place the file into. I used an array because files can easily be larger than
32k (the limit of text variables). The data is moved into the array in 32k

chunks.

The errors returned are Mac OS errors.

MP MERGEARRAYS
MP MERGEARRAYS ("aList" ; Delimeter ; "BigArray")
PARAMETER TYPE RECEIVES DATA DESCRIPTION
aList STRING NO Name of the array which contains
the names of the arrays to be
merged
Delimeter STRING NO Delimeter to separate the columns
of the created array
BigArray STRING NO Name of the array to receive the
merged results
RETURNS VALUE TYPE DESCRIPTION
NO N/A N/A

Pass the name of an array that contains the names of the arrays to be

merged. (what?) See the demo. Also pass the character you want to use as
a delimiter (if any) between columns (for no delim, pass ""). Lastly, pass the
array to receive the merged results.

MP TEXT2ARRAY

MP TEXT2ARRAY (vText ; "yArray , DelimNum)

PARAMETER TYPE RECEIVES DATA DESCRIPTION
vText TEXT NO IText variable to be broken down
into an array
myArray ARRAY NO Array to receive the results of the
procedure
DelimNum INTEGER NO IASCII number of the delimiter
character that breaks lines of text
RETURNS VALUE TYPE DESCRIPTION
NO N/A N/A

Pass the char(DelimNum) delimited text variable, and a populated text array will
be created.

NOTE : In versions previous to 1.65, the NAME of the array was passed, now the array itself
is passed. This is VERY IMPORTANT. The program will crash if this is not done correctly.

MP FILLARRAY

MP FILLARRAY ("ResultArray" ; "SourceArray" ; Where)

PARAMETER TYPE RECEIVES DATA DESCRIPTION
ResultArray STRING NO Name of the array to receive the
elements from the source array
SourceArray STRING NO Name of the array that the
elements are to be moved from
Where INTEGER NO Element number in the result array
to start inserting elements from
SourceArray
RETURNS VALUE TYPE DESCRIPTION
NO N/A N/A

This routine moves the data from "sourceArray" into "ResultArray" starting at
element where. All data is inserted into the array, and previous elements are
adjusted "downward".

If Where = Size of Array(ResultArray) + 1 then the sourceArray will be appended to
ResultArray.

10

MP S2N Array

MP S2N_Array ("Source" ; "Result")

PARAMETER TYPE RECEIVES DATA DESCRIPTION
Source STRING NO Name of the array that contains the
Text elements
Result STRING NO Name of the array that the Text

elements are to moved and
converted into

RETURNS VALUE TYPE DESCRIPTION
NO N/A N/A

This routine moves the data from "source” into "Result", converting the string
data in "source" to numeric data in "result".

MP N2S_Array

MP N2S_Array ("Source" ; "Result")

PARAMETER TYPE RECEIVES DATA DESCRIPTION
Source STRING NO Name of the array that contains the
numeric elements
Result STRING NO Name of the array that the numeric

elements are to moved and
converted into

RETURNS VALUE TYPE DESCRIPTION
NO N/A N/A

This routine moves the data from "Source" into "Result", converting the
numeric data in "source" to string data in "Result".

MP POPULATE

MP POPULATE ("Source" ; Value)

PARAMETER TYPE RECEIVES DATA DESCRIPTION
Source STRING NO Name of the array to be populated
Value STRING NO \Value to place in every element of
Source
RETURNS VALUE TYPE DESCRIPTION
NO N/A N/A

This routine places "value" into all elements of the "source" array.

11

MP DISTINCT

MP DISTINCT ("Source" ; "Result")

PARAMETER TYPE RECEIVES DATA DESCRIPTION
Source STRING NO Name of the array that contains the
sorted elements
Result STRING NO Name of the array that will receive

the distinct elements from Source

RETURNS VALUE TYPE DESCRIPTION
NO N/A N/A

This routine fills array "Rresult" with the distinct values of array "source". Very
similar to the "Distinct Values" command in v3.0.x, but works on arrays.

MP SearchArray

NumElems:= MP SearchArray ("ToFind" ; aSource ; Start ; aResults ; alndexNums ; "Operator")

PARAMETER TYPE RECEIVES DATA DESCRIPTION
ToFind STRING NO IThe text to be located in the array -
wild cards are allowed
Source ARRAY NO [Text array that will be searched
Start INTEGER NO Element in Source array to begin
searching for ToFind
Results ARRAY NO Text array to receive the values

from the source that match the
search criteria

ElementNums ARRAY NO Longint array to receive the
element numbers from the source
where matches were found

ComparisonOP STRING NO Operator : "=", "#", "<", ">" "<=",
oy
RETURNS VALUE TYPE DESCRIPTION
YES INTEGER Returns the number of elements

found in the source array that
match the search criteria

This routine returns the number of occurrences of "ToFind" in aSource. It
also populates aResults with the values found in aSource, and populates
alndexNums with the element numbers the values were found at. "Start" is
the first element to be searched. "Operator"is =, #, <, >, <=, >=,

Pass the actual arrays, NOT the names to this routine

12

MP ARRAYSELECT

MP ARRAYSELECT ("aValues" ; FileNumber ; FieldNumber)

PARAMETER TYPE RECEIVES DATA DESCRIPTION
Values STRING NO Name of the array that contains the
\values to be found in the file
FileNumber INTEGER NO File number of file to be searched.
FieldNumber INTEGER NO Field number of field to be used in
searching
RETURNS VALUE TYPE DESCRIPTION
NO N/A N/A

This routine creates a selection in the given file where the given field equals
a value in the aValues array.

Can be used in conjunction with MP SearchArray to create a selection based on several elements of a given array.

MP APPLY2ARRAY
MP APPLY2ARRAY ("aSource" ; "FuncProc" ; ChangeElemsYN)
PARAMETER TYPE RECEIVES DATA DESCRIPTION
Source STRING NO Name of the array that contains the
[Text elements
FuncProc STRING NO Function or procedure to execute

ChangeElemsYN INTEGER NO Flag for deciding to change the
elements with the result of the
function - 0 = No, 1 = Yes

RETURNS VALUE TYPE DESCRIPTION

NO N/A N/A

This routine executes the "FuncProc" once for every element in the
"aSource" array. If the "FuncProc" is a function and returns a value, then
ChangeElemsYN is looked at, and if it = 1 then the result of the function is
placed in the current element of the array, and if it's 0, nothing is changed
in the array.

To substitute the current element of the array into the function/procedure,
place the name of the array, and a ~ in place of the element number :

MP APPLY2ARRY("aNames";"Uppercase(aNames{"~})";1)
or
MP APPLY2ARRAY("aNums";"aNums{~ }:=aNums{~-1}+1";0)

The 7 is simply replaced in the function by the current element number, so you can do math with it
as in the above example.

13

You can also issue procedure calls :

MP APPLY2ARRAY("aValues";"SEND PACKET(Doc;aValues{~})";0)

14

The Drag & Drop Routines

MP DragBlock

myRegion := MP DragBlock ("Left";"Top";"Right";"Bottom";Width;Height)

PARAMETER TYPE RECEIVES DATA DESCRIPTION

Left STRING NO Name of the integer array
containing the left coordinates of
the drop-off rects
Top STRING NO Name of the integer array
containing the top coordinates of
the drop-off rects
Right INTEGER NO Name of the integer array
containing the right coordinates of
the drop-off rects
Bottom STRING NO Name of the integer array
containing the bottom coordinates
of the drop-off rects

Width INTEGER NO \Width, in pixels, of the rect to be
dragged
Height INTEGER NO Height, in pixels, of the rect to be
dragged
RETURNS VALUE TYPE DESCRIPTION
YES INTEGER Returns the drop-off rect number

that the rect was dropped in

Pass the names of the arrays containing the coordinates of the valid "drop
off" regions for the block being dragged. All coordinates are local to the
window they appear in. Also pass the width and height of the block to be
dragged.

The region into which the block was dropped will be returned.

Errors : -1 = Not dropped into a valid region

-2 = Not all the arrays are the same size
-3 = More than 10 regions.

15

MP DragText

myRegion := MP DragText (myStr ; "Left" ; "Top" ; "Right" ; "Bottom")

PARAMETER TYPE RECEIVES DATA DESCRIPTION
StringToDrag STRING NO Text to use to create gray rect for
dragging
Left STRING NO Name of the integer array

containing the left coordinates of
the drop-off rects

Top STRING NO Name of the integer array
containing the top coordinates of
the drop-off rects

Right INTEGER NO Name of the integer array
containing the right coordinates of
the drop-off rects

Bottom STRING NO Name of the integer array
containing the bottom coordinates
of the drop-off rects

RETURNS VALUE TYPE DESCRIPTION

YES INTEGER Returns the drop-off rect number
that the rect was dropped in

Pass the string to be dragged, and the names of the arrays containing the
coordinates of the valid "drop off" regions for the block being dragged.
The region into which the block was dropped will be returned.

Errors : -1 = Not dropped into a valid region

-2 = Not all the arrays are the same size
-3 = More than 10 regions.

16

MP MultiDrag

myRegion := MP MultiDrag("Left";"Top";"Right";"Bottom";"Windows";W;H)

PARAMETER TYPE RECEIVES DATA DESCRIPTION
Left STRING NO Name of the integer array
containing the left coordinates of
the drop-off rects
Top STRING NO Name of the integer array
containing the top coordinates of
the drop-off rects
Right INTEGER NO Name of the integer array
containing the right coordinates of
the drop-off rects
Bottom STRING NO Name of the integer array
containing the bottom coordinates
of the drop-off rects
Windows STRING NO Name of the text array containing
the names of the windows the drop-
off rects are in
Width INTEGER NO \Width, in pixels, of the rect to be
dragged
Height INTEGER NO Height, in pixels, of the rect to be
dragged
RETURNS VALUE TYPE DESCRIPTION
YES INTEGER Returns the drop-off rect number
that the rect was dropped in

Pass the names of the arrays containing the coordinates of the valid "drop
off" regions for the block being dragged. Also pass the names of the
windows containing the regions. All region coordinates are local to the
windows they appear in. Also pass the width and height of the block to be
dragged.

The region into which the block was dropped will be returned.

*+Note
This routine will hilight the valid dropoff rects as they are dragged over.

0 = Dropped on the desktop

-1 = Not dropped into a valid region

-2 = Not all the arrays are the same size
-3 = More than 10 regions.

Errors :

17

MP Dragltem

myRegion := MP Dragltem (myStr;"Left";"Top";"Right";"Bottom";"Windows")

PARAMETER TYPE RECEIVES DATA DESCRIPTION
StringToDrag STRING NO [Text to drag around the screen
Left STRING NO Name of the integer array
containing the left coordinates of
the drop-off rects
Top STRING NO Name of the integer array
containing the top coordinates of
the drop-off rects
Right INTEGER NO Name of the integer array
containing the right coordinates of
the drop-off rects
Bottom STRING NO Name of the integer array
containing the bottom coordinates
of the drop-off rects
Windows STRING NO Name of the text array containing
the names of the windows the drop-
off rects are in
RETURNS VALUE TYPE DESCRIPTION
YES INTEGER Returns the drop-off rect number

that the rect was dropped in

Pass the string to be dragged, and the names of the arrays containing the
coordinates of the valid "drop off" regions for the block being dragged.

The region into which the block was dropped will be returned.

***Note

This routine will hilight the valid dropoff rects as they are dragged over.

Errors :

-1 = Not dropped into a valid region

-2 = Not all the arrays are the same size
-3 = More than 10 regions.

18

The Gestalt Routine

MP Gestalt

myResult := MP Gestalt (Selector ; Result)

PARAMETER TYPE RECEIVES DATA DESCRIPTION
Selector STRING NO 4 Character selector for Gestalt
Result LONGINT YES Numeric representation of answer
to question
RETURNS VALUE TYPE DESCRIPTION
YES LONGINT Error code from Gestalt

The selector is a valid 4 character string, and the result is a long integer

result.

See Inside Macintosh VI, chapter 3, page 46 for more info on selectors and

responses. All of the mMp k... commands are the valid selectors for mMp Gestalt.

Example : Err := MP Gestalt ("mach";mType)

mType : 11 = IIci, 18 = IIsi, etc.

Below are all of the selector constants in MikePack 1.6

MP kAddrMode MP kFileSys MP kMemMgr MP kResMgr

MP kAliasMgr MP kFileTrans MP kMiscAttr MP kROMSize
MP kAppleEvts MP kFolders MP kNotifyMgr MP kROMVersion
MP kAppleTalk MP kFonts MP kNuBusAttr MP kScrMgr

MP kKAUX MP kFPU MP kNumScripts MP kSerialHW

MP kCommRsrc MP kGestaltMgr MP kOSAttr MP kSoundMgr
MP kCommTools MP kHardware MP kOSTraps MP kStdFileAttr
MP kConnect MP kHelpMgr MP kParity MP kStdNPB

MP kCPU MP kMP keyBoard MP kPhysRAM MP kSysVersion
MP kDAM MP kLowMem MP kPopups MP kTerminalMgr
MP kDialogs MP kLPageSize MP kPowerMgr MP kTextEdit

MP kEasyAccess MP kLRAMSize MP kPPC MP kTimeMgr
MP kEditionMgr MP kMachlcon MP kQDFeatures MP kTrapTable
MP kExtTools MP kMachineType MP kQDVersion MP kVMem

19

The PopupMenu Routines

MP PopupMenu

myltem := MP PopupMenu ("ltemList" ; Defaultltem ; H; V)

PARAMETER TYPE RECEIVES DATA DESCRIPTION

ltems STRING NO Name of array containing the
elements of a popup menu

Default STRING NO Item which is to be the default item
Horizontal INTEGER NO Horizontal location, in pixels, for the
upper left of the menu to appear
Vertical INTEGER NO \Vertical location, in pixels, for the

upper left of the menu to appear

RETURNS VALUE TYPE DESCRIPTION

YES INTEGER \Which item was chosen from the
menu

This routine creates a popup menu containing the items in the array
"TtemList", starts the user at item Defaultltem, and draws the menu at
coordinates H,V.

It returns the chosen menu item, or O for none.

20

MP PopupPlus

myltem := MP PopupPlus ("lItemList" ; Defaultltem ; H ; V ; CheckYN)

PARAMETER TYPE RECEIVES DATA DESCRIPTION
ltems STRING NO Name of array containing the
elements of a popup menu

Default STRING NO Item which is to be the default item
Horizontal INTEGER NO Horizontal location, in pixels, for the
upper left of the menu to appear
Vertical INTEGER NO \Vertical location, in pixels, for the
upper left of the menu to appear
CheckYN INTEGER NO 1 = Check the default item,

0 = Don't check the default item

RETURNS VALUE TYPE DESCRIPTION
YES INTEGER \Which item was chosen from the
menu

This routine creates a popup menu containing the items in the array
"TtemList", starts the user at item Defaultltem, and draws the menu at
coordinates H,V. If CheckYesNo = O, then the default item is not checked.
Ifit =1, it is.

Note
In MP PopupPlus to create a sub menu, a menu item should be in this form :

[SubMenuTitle]SubMenuArrayName

eX. [Colors]aColors
where aColors is a text array with the names of colors in it.

For MP PopupPlus : if myltem > 99 then :
SubMenu Number = INT(myltem/100)
SubMenu Item = myltem - (INT(myltem/100)*100)

21

The String Routines

MP JustifyText

myString := MP JustifyText (myString ; myLen ; character ; myType)

PARAMETER TYPE RECEIVES DATA DESCRIPTION
String TEXT NO String to be placed into a field of
characters
Length INTEGER NO Length of the field to be created
Character STRING NO Character to use to fill in the field,
around the text being justified
JustificationType STRING NO "L" = Left justify
"C" = Center
"R" = Right justify
RETURNS VALUE TYPE DESCRIPTION
YES STRING [The justified text

Pass the original string, the length of the desired resulting string, the

character to use as a pad, and the type of justification :

"L" = Left

"C" = Centered

"R" = Right

MP PadText

myText := MP PadText (myText ; myLen ; Character)

PARAMETER TYPE RECEIVES DATA DESCRIPTION
String STRING NO String to add padding to
Length INTEGER NO Total size of padded text
Character STRING NO Character to pad (Add to the right)
the text with
RETURNS VALUE TYPE DESCRIPTION
YES STRING [The padded string

This will pad the passed text on the right side to the desired length using
the passed character.

(Same as justifying text as being "Left" justified).

22

MP TrimText

myText := MP TrimText (myText)

PARAMETER TYPE RECEIVES DATA DESCRIPTION
String STRING NO String that is to have leading and
trailing spaces removed from it
RETURNS VALUE TYPE DESCRIPTION
YES STRING Original string with no leading or
trailing spaces

Pass the text to be trimmed, and all leading and trailing spaces will be
summarily exterminated! (removed).

MP TrimLeft
myText := MP TrimLeft (myText)
PARAMETER TYPE RECEIVES DATA DESCRIPTION
String STRING NO String that is to have leading
spaces removed from it
RETURNS VALUE TYPE DESCRIPTION
YES STRING Original string with no leading
spaces

Pass the text to be trimmed, and all leading spaces will be summarily
exterminated! (removed).

MP TrimRight
myText := MP TrimRight (myText)
PARAMETER TYPE RECEIVES DATA DESCRIPTION
String STRING NO String that is to have trailing spaces
removed from it
RETURNS VALUE TYPE DESCRIPTION
YES STRING Original string with no trailing
spaces

Pass the text to be trimmed, and all trailing spaces will be summarily
exterminated! (removed).

23

MP SCROLLTEXT

MP SCROLLTEXT ("aLines";"aSizes";"aTechs";"aFonts";"aStyles";"aColors";vWidth;vHeight)
PARAMETER TYPE RECEIVES DATA DESCRIPTION
Lines STRING NO Name of the array that contains the
lines of text to be scrolled
Sizes STRING NO Name of the Integer array that
contains the sizes of the fonts for
each line
Techniques STRING NO Name of the Integer array that
contains the display techniques, 0
or 1, for each line
Fonts STRING NO Name of the array that contains the
font names to use for each line
Styles STRING NO Name of the array that contains the
style to use for each line
Colors STRING NO Name of the array that contains the
color of the text for each line
Width INTEGER NO \Width of the display window for the
scrolling text
Height INTEGER NO Height of the display window for the
scrolling text
RETURNS VALUE TYPE DESCRIPTION
NO N/A N/A

Will open a window and scroll the lines of text through the window until a
click. The size, font, etc. is set for each line. The "aTechs" array contains

the "techniques" used to display each line : Either 0 = Place in the center of
the line, or 1 = slide the two halves of the line together.

Colors : BLACK, WHITE, RED, GREEN, BLUE, CYAN, MAGENTA, YELLOW

Styles : Plain, Bold, Italic, Underline

24

MP DRAWTEXT

MP DRAWTEXT("Howdy";H;V;Ticks;"FontName";Size;"StyleNumber")

PARAMETER TYPE RECEIVES DATA DESCRIPTION
String STRING NO [Text to be drawn on the screen
Horizontal INTEGER NO Horizontal location to draw the text
at
Vertical INTEGER NO \Vertical location to draw the text at
Ticks INTEGER NO Number of ticks to leave the text on
the screen before erasingit- 0=
Don't erase
Font STRING NO Font Name for text
Size INTEGER NO Size of text
Style STRING NO Style of text
RETURNS VALUE TYPE DESCRIPTION
NO N/A N/A

In the front most window, will draw the passed text at the passed size, font,

and style number. It will stay on the screen for "Ticks" ticks (1/60) of a
second. If you pass O ticks, it will not erase.

Styles : Plain, Bold, Italic, Underline

25

The Miscellaneous Routines

MP SCROLLRECT
MP SCROLLRECT (left ; top ; right ; bottom ; dx ; dy)
PARAMETER TYPE RECEIVES DATA DESCRIPTION
Left INTEGER NO Left side of rect to be scrolled
Top INTEGER NO [Top side of rect to be scrolled
Right INTEGER NO Right side of rect to be scrolled
Bottom INTEGER NO Bottom side of rect to be scrolled
Hor. Distance INTEGER NO Number of pixels to scroll the area
horizontally
Vert. Distance INTEGER NO Number of pixels to scroll the area
vertically
RETURNS VALUE TYPE DESCRIPTION
NO N/A N/A

Pass the coordinates of the rect to scroll, and the number of pixels to scroll
in the x and y directions. -x = left, -y = up.

Scrolls EVERYTHING in the rect passed to it.

26

MP FRAMERECT

MP FRAMERECT (left ; top ; right ; bottom ; w; h)

PARAMETER TYPE RECEIVES DATA DESCRIPTION
Left INTEGER NO Left side of rect to be drawn
Top INTEGER NO [Top side of rect to be drawn
Right INTEGER NO Right side of rect to be drawn
Bottom INTEGER NO Bottom side of rect to be drawn
Width INTEGER NO Width of line being drawn
Height INTEGER NO Height of line being drawn
RETURNS VALUE TYPE DESCRIPTION
NO N/A N/A

Pass the coordinates of the rect to draw, and the number of pixels to use as
the pen size.

MP ERASERECT

MP SCROLLRECT (left ; top ; right ; bottom ; w; h)

PARAMETER TYPE RECEIVES DATA DESCRIPTION
Left INTEGER NO Left side of rect to be erased
Top INTEGER NO [Top side of rect to be erased
Right INTEGER NO Right side of rect to be erased
Bottom INTEGER NO Bottom side of rect to be erased
Width INTEGER NO \Width of line being erased
Height INTEGER NO Height of line being erased
RETURNS VALUE TYPE DESCRIPTION
NO N/A N/A

Pass the coordinates of the rect to erase, and the number of pixels to use as
the pen size.

27

The Clipboard Routines

This is a new section for MikePack v1.6

MP Array2Clip

This routine has been moved from the Array Pack as of version 1.6

myResult := MP Array2Clip ("myArray")

PARAMETER TYPE RECEIVES DATA DESCRIPTION
Source STRING NO Name of the array that contains the
Text elements to be copied to the
clipboard
RETURNS VALUE TYPE DESCRIPTION
YES INTEGER Clipboard error code

Will place the contents of the text array onto the clipboard, returning any
errors along the way.

MP Pict2Clip

myResult := MP Pict2Clip ("PictVar")

PARAMETER TYPE RECEIVES DATA DESCRIPTION
PictureVar STRING NO Name of the picture variable that is
to be copied to the clipboard
RETURNS VALUE TYPE DESCRIPTION
YES INTEGER Clipboard error code

Will place the contents of the picture variable onto the clipboard, returning
any errors along the way.

28

The Window Routines

This is a new section for MikePack v1.6

MP WINDOWLOC
MP WINDOWLOC (vLeft ; vTop ; vRight ; vBottom)
PARAMETER TYPE RECEIVES DATA DESCRIPTION
Left INTEGER YES Receives the left side of the
frontmost window, in global
coordinates
Top INTEGER YES Receives the top side of the
frontmost window, in global
coordinates
Right INTEGER YES Receives the right side of the
frontmost window, in global
coordinates
Bottom INTEGER YES Receives the bottom side of the
frontmost window, in global
coordinates
RETURNS VALUE TYPE DESCRIPTION
NO N/A N/A

Returns the global coordinates of the front most window (in pixels).

MP WINDOWSIZE
MP WINDOWSIZE (vHeight ; vWidth)
PARAMETER TYPE RECEIVES DATA DESCRIPTION
Height INTEGER YES Receives the height of the
frontmost window, in global
coordinates
Width INTEGER YES Receives the width of the frontmost
window, in global coordinates
RETURNS VALUE TYPE DESCRIPTION
NO N/A N/A

Returns the height and width of the front most window (in pixels).

29

MP SIZEWINDOW

MP SIZEWINDOW (vHeight ; vWidth)

PARAMETER TYPE RECEIVES DATA DESCRIPTION
Height INTEGER NO Sets the height of the frontmost
window, in pixels
Width INTEGER NO Sets the width of the frontmost
window, in pixels
RETURNS VALUE TYPE DESCRIPTION
NO N/A N/A

Sets the height and width of the front most window (in pixels).

MP MOVEWINDOW

MP MOVEWINDOW (H; V)

PARAMETER TYPE RECEIVES DATA DESCRIPTION
Horizontal INTEGER NO Sets the left side of the frontmost
window, in pixels
Vertical INTEGER NO Sets the top side of the frontmost
window, in pixels
RETURNS VALUE TYPE DESCRIPTION
NO N/A N/A

Sets the top left corner of the front most window to H,V (in pixels).

30

MP APPLY2ARRAYutiiiiieiie et 6
MP ATTAY2CLP . cen ittt 20
MP ATTAY2FIl€. i 1
MP ATTAY2TEXE. .. ittt et 1
MP ARRAYSELECT ...ttt ettt aes 6
MP DISTINCT ... ettt e e e 5
MP DragBloCK......ccuuiiiiiiiiiie e 7
MP Dragltem......cc.euiniie e 10
MP DragTeXt.....coue ettt e e ans 8
MP DRAWTEXT ...ttt ettt e e e 17
MP ERASERECT ... ittt et ee e e 19
MP FILE2TEXT ... ottt ettt ees 2
MP FILLARRAY ..ottt ettt et et e 3
MP FRAMERECT ... ittt ettt e e e e 19
MP GeStalt. .. ceeiieieii e 11
MP JUSTHEYTEXE. . ienieiiie e e 14
MP MERGEARRAYS ...ttt eaee 2
MP MOVEWINDOW. ..ottt 22
MP MUIEIDTAQG. ... ittt e e s 9
MP N2S ATTAY...uituiiiiiiiiiii et 4
MP PadTeXt. ... oeeiiiieiieiiei ettt 14
J\Y 1 o Te] 1 O) o T PP 20
MP POPULATE ...ttt e e e eanes 4
MP POPUPMENU....cuniiiiiiiieie et eaees 12
MP POPUPPIUS....cuiiiicee e 13
MP S2N ATTAY ...ttt 4
MP SCROLLRECT ... ceiiiiiiiiei ettt 18
MP SCROLLTEXT ...ttt ettt ettt ea e eieeans 16
MP SEarChATTAY.....ccuuiiiiiiiieei et 5
MP SIZEWINDOW. ...ttt et 22
MP TEXT2ARRAY ...ttt ettt 3
MP TrimLeft.. ..o e 15
MP TrimRight......cooii 15
MP TTImMTEXE. ... e e e 15
MP WINDOWLOC..... ittt et eve e e e eaneeans 21
MP WINDOWSIZE. ... oottt et 21

31

